# Analysis of Student Learning Outcomes in Subjects PPkn Class V Lessons at SD Negeri 106148 Bulu Cina Deli Serdang, Sumatera Utara

Ardilla Azzahra Siregar<sup>1</sup>

**Article Info** Page: 139 - 147 ISSN: 3026-5290 Vol 3 No 1 2025

## **Corresponding Author**

Ardilla Azzahra Siregar, Elementary School Teacher Education Study Program, Universitas Muhammadiyah Sumatera Utara Email: ardillaazzahrasiregar23@gmail.com

#### **Abstract**

This study aims to determine and analyze students' understanding of the Pancasila and Citizenship Education (PPKn) subject at SD Negeri 106148 Bulu Cina, Deli Serdang, North Sumatra. By identifying and analyzing various factors that influence student learning outcomes, researchers can determine the extent to which group learning methods have a positive effect on improving student learning outcomes in the PPKn subject. From the results of this study, we can identify several factors that cause low student learning outcomes, so that appropriate solutions can be found to improve the quality of learning in the classroom. Researchers used a descriptive approach. Location at SD Negeri 106148 Bulu Cina Deli Serdang North Sumatra. The results of the study showed that the pre-test results showed that the level of students' initial understanding of the PPKn material was quite varied, with an average score of 69.79. Although most students were in the good category, there were still students who obtained scores below the standard, which indicated the need for adaptive learning strategies. The post-test results showed an increase in the distribution of student scores towards a higher direction, with an average score of 86.54 and a value mode in the high category (90). This reflects that the PPKn learning process implemented was able to improve the understanding of most students on the material taught. Although the post-test results showed good achievements in general, there were still several students with scores below the minimum standard. Therefore, additional guidance and an individual learning approach are needed to ensure equitable learning outcomes and the achievement of overall learning objectives.

### **Keyword:**

Group Learning Method, Descriptive Approach, Student Understanding

#### 1. INTRODUCTION

Education is crucial for everyone. The educational process is naturally expected to yield positive results. Good learning outcomes can be achieved through diligent study. Factors influencing student learning success are generally influenced by internal and external factors. Internal factors originate from the student themselves, while external factors originate from the family, school, and community environments. The learning process can take place because of the interconnectedness of students, teachers, and the curriculum. Students can learn effectively if the learning facilities and infrastructure are adequate, the teacher's learning model is engaging, and students actively participate in the learning process so they don't feel bored or tired during class. Improving learning outcomes isn't just about students' willingness to learn, but the teaching methods used by teachers also influence student learning outcomes. In practice, some teachers still employ learning models that aren't engaging, making them less engaged in class. Teachers still dominate the learning process, leaving students passive. The current growing trend is that students must learn through their own activities by incorporating concepts and principles, where they must be encouraged to have experiences and conduct experiments and let them discover the principles for themselves (Irdam Idrus & Sri Irawati, 2019). Civics Education (PKn) is a subject that serves to preserve the noble values originating from the culture of the Indonesian nation. (Simanjuntak\* et al., 2023). Civics Education can be interpreted as a vehicle for developing and preserving noble values and morals rooted in the culture of the Indonesian nation which are expected to be realized in the daily life behavior of students as individuals and members of society in the life of the nation and state. (Hidayat et al., 2020). (Nurmalisa et al., 2020) said that Civic Education is a learning process that seeks to build civic knowledge, civic skills, and civic disposition of students, so that the goal of forming good citizens can be realized, because Civic Education is an education that plays a role in building the character of students by teaching moral values and the values of the personality of the Indonesian nation contained in Pancasila. The results of the researcher's observations on October 5, 2025 with Mrs. Dinda Ayu Tria, S.Pd, as the homeroom teacher of class V have found problems in class V of SD Negeri 106148 Bulu Cina Deli Serdang North Sumatra which I have summarized through the Google Drive link. Here is the Google Drive link https://drive.google.com/file/d/1T2PfgS5xLBMIzm-PK8E-54DU6vjFm7\_/view?pli= 1 In civics lessons, students still do not understand the material presented by the teacher because students feel that civics lessons are not interesting and boring, students also feel that civics lessons are monotonous learning, and there are several other factors that make student learning outcomes still low.

The definition of learning outcomes can be explained by understanding the two words that form it: "results" and "learning." The definition of "results" refers to an outcome resulting from an activity or process that results in a functional change in input. Learning, on the other hand, is the process of bringing about behavioral changes in the individual who is learning. (Hanifah, 2023). Learning outcomes are the result of the learning process undertaken by students. If students engage in the process effectively, they will achieve positive results. Conversely, if the process is not effective, students will achieve less than satisfactory results. (Muzaki, 2016). According to (Rahma et al., 2023), Learning outcomes are the fruit of efforts (activities) that have been carried out by students. Learning outcomes are a benchmark for learning activities that have been carried out which are known through assessment activities. Student learning outcomes are the abilities that students have after receiving learning experiences. The learning outcomes achieved by students at school are the goals of learning activities. Based on the above concept, the understanding of learning outcomes can be concluded as positive changes in behavior and abilities possessed by students from an interaction of learning and teaching activities in the form of intellectual learning outcomes, cognitive strategies, attitudes and values, verbal innovations, and motor learning outcomes. These changes can be interpreted as an increase and better development compared to before (Khasanah, 2018). There are factors that can hinder or support student learning. According to Wahyuni et al. (2020), factors that influence learning can be categorized into two groups: internal factors (physical, psychological, and fatigue) and external factors (family, school, and community). Factors that influence learning outcomes are classified as including:

### A. Internal Factors (found within the individual)

- 1. Physiological, including health conditions and body conditions.
  - a) A state of health means an active body and free from disease
  - b) Physical condition means physical defects in the five senses which are congenital or due to
- 2. Psychological factors, including attention, interest, talent, readiness.
  - a) Attention means the emergence of attention to the teaching material from the teacher so that there is no boredom in learning.
  - b) Interest is the tendency to pay attention and remember lessons
  - c) Talent is the psychological ability to learn so that it can be realized as real results after
  - d) Readiness is the initial knowledge possessed by students in participating in learning in the form of giving responses.
- B. External factors (existing outside the individual)
  - 1. Schools, including curriculum, teacher teaching methods, school community relations, school regulations, teaching tools, building conditions, library
    - a) Curriculum is an activity for students to receive, master and develop teaching materials into something that can be understood.
    - b) The teacher's teaching method is a method used in the learning process which can influence the learning outcomes of students
    - c) Relationship means connection, the school community in question is teachers and students. A good relationship between teachers and students so that students try to learn as well as
    - d) The school regulations in question are that students are disciplined in participating in

- thematic learning
- e) Learning tools are related to the way students learn. The tools used by teachers in learning will be used by students to receive learning materials
- A building that is in good condition will provide comfort to students in receiving learning.
- g) The library is an information center. Reading materials and books from various sources can be used to increase knowledge.
- 2. Family, including parental education and residence
  - a) Parental education means paying attention to children (students) while studying at home, and providing direction if they do something that is less orderly in studying
  - b) Living conditions mean a comfortable environment for carrying out learning activities at home. 15 From the statement above, it can be concluded that learning outcomes also have factors that can influence their assessment, namely in terms of internal (within a person) and external (outside a person).

# 2. RESEARCH METHODOLOGY

This research uses a descriptive approach. According to (Jayusman & Shavab, 2020), "descriptive research is research that aims to provide or describe a current situation or phenomenon using scientific procedures to address actual problems."

# A. Population (Research Object)

According to Sugiyono (2017:80) population is a generalization area consisting of objects or subjects that have certain qualities and characteristics determined by researchers to be understood and drawn conclusions. In this study, the population is 24 students of class VA and 21 students of class VB at SD Negeri 106148 Bulu Cina Deli Serdang, North Sumatra. The table of the total number of class V students at SD Negeri 106148 Bulu Cina Deli Serdang, North Sumatra is as follows. This research was conducted at SD Negeri 106148 Bulu Cina, Deli Serdang, North Sumatra. This research took place from January to April 2025, the research subjects were 21 students of class VA as the control class group and 24 students of class VB as the experimental class group. The following is the sample data for the two classes to be tested:

Table 1 Sample Date of Class VA and VD

| Sample Data of Class VA and VD |       |         |  |  |
|--------------------------------|-------|---------|--|--|
| Group                          | Class | Student |  |  |
| Experiment                     | VA    | 24      |  |  |
| Control                        | VB    | 21      |  |  |
| Amount                         |       | 45      |  |  |

The experimental class group will be given special treatment in the form of interactive and interesting learning while the control class group will not be given any special treatment so that researchers can determine how much influence this treatment has on student understanding in each group. After the learning and delivery of the material has been completed, the researcher will then conduct a learning outcome test in each learning group. This activity aims to see the extent of student mastery of the material that has been given. The instrument items in the learning outcome test are guided by the indicators of achievement of the material given. As for obtaining data on student learning outcomes, researchers will create questions that will be answered by students after the material is given. Researchers will collect data through test results, namely pretest and posttest. The test used in this study is an essay test consisting of knowledge (C1), understanding (C2), application (C3), analysis (C4), and synthesis (C5). This test is given to the experimental and control classes, both in the pretest and posttest. And each correct answer is given a score of 1 and an incorrect answer is given a score of 0. The learning test results obtained from both class groups will be collected and tested using several test indicators. The tests conducted include Data Validity, Reliability, Normality, Normalized Gain, Homogeneity, Hypothesis, and Regression. All of these tests will be conducted using the SPSS application.

#### 3. RESULT AND DISCUSSION

Pre-Test and Post-Test Results Experimental Class Pre-Test

# Table 2 Pre-Test for Experimental Class

**Descriptive Statistics** 

|                     | N  | Minimum | Maximum | Mean    | Std. Deviation |
|---------------------|----|---------|---------|---------|----------------|
| Pre Test Experiment | 24 | 55.00   | 85.00   | 69.7917 | 8.53117        |
| Valid N (listwise)  | 24 |         |         |         |                |

Descriptive statistics on the Experimental Pre-Test data show that the number of students (N) who took the pre-test was 24 people. The minimum score obtained by students was 55.00, while the maximum score reached 85.00, which means there was a variation in students' initial abilities before being given certain treatments or learning. The mean (average) score of all participants was 69.79, which indicates that in general students' initial understanding of the material was quite good, although there were still students with low scores. The standard deviation of 8.53 indicates that there was a fairly diverse distribution of scores among students, indicating a significant difference in initial abilities before the learning treatment was carried out in the experimental class.

# Pre-Test of Control Class

Table 3
Pre-Test of Control Class

**Descriptive Statistics** 

|                    | N  | Minimum | Maximum | Mean    | Std. Deviation |
|--------------------|----|---------|---------|---------|----------------|
| Pre-Test Control   | 21 | 50.00   | 80.00   | 63.5714 | 9.76510        |
| Valid N (listwise) | 21 |         |         |         |                |

Descriptive statistics for the Pre-Test Control data show that the number of students who took the pretest in the control group was 21 people . The lowest (minimum) score obtained by students was 50.00 , while the highest (maximum) score reached 80.00 . The average (mean) pre-test score was 63.57 , which reflects the level of students' initial understanding of the material before receiving learning with a particular method. The standard deviation of 9.77 indicates that there was a fairly large variation in scores among students, indicating that the initial abilities of students in the control group were quite diverse.

# Experimental Class Post Test

Table 4 Experimental Class Post Test

**Descriptive Statistics** 

|                      | N  | Minimum | Maximum | Mean    | Std. Deviation |
|----------------------|----|---------|---------|---------|----------------|
| Post Test Experiment | 24 | 70.00   | 100.00  | 83.5417 | 9.14606        |
| Valid N (listwise)   | 24 |         |         |         |                |

Descriptive statistics for the Experimental Post-Test data show that 24 students took the post-test after being given a particular treatment or learning method. The minimum score obtained was 70.00, while the maximum score reached 100.00, which indicates an increase in learning outcomes after the treatment. The average (mean) post-test score was 83.54, indicating an increase in understanding and mastery of the material by students as a whole. The standard deviation of 9.15 indicates that there is variation in scores, but the spread is relatively moderate, which means that most students showed a fairly consistent increase in learning outcomes in the experimental group.

# Post Test of Control Class

Table 5 Post Test of Control Class

**Descriptive Statistics** 

|                    | N  | Minimum | Maximum | Mean    | Std. Deviation |
|--------------------|----|---------|---------|---------|----------------|
| Post Test Control  | 21 | 55.00   | 90.00   | 74.5238 | 9.20662        |
| Valid N (listwise) | 21 |         |         |         |                |

Descriptive statistics for the Control Post-Test data show that 21 students took the post-test after the learning process took place without any special treatment. The minimum score obtained by students was 55.00, while the maximum score reached 90.00. The average (mean) post-test result of 74.52 indicates an increase in student understanding compared to the pre-test score, although not as large as the experimental group. The standard deviation of 9.21 indicates a fairly moderate variation in scores among students, reflecting that the level of mastery of the material still varies in the control group.

# Submission of Analysis Prerequisites Validity Test

Validity testing aims to determine the extent to which a research instrument is able to measure what it is supposed to. In this case, validity is tested by examining the correlation between each statement item (V1 to V15) and the total score (Total). If the Pearson correlation value between a variable and the total score is significant (p-value <0.05), then the item is considered valid.

> Table 6 **Experimental Class Validity Test Results**

|     | Experi  | ilental Class Validity |             |
|-----|---------|------------------------|-------------|
| No. | r count | r <sub>table</sub>     | Information |
| 1   | 0.651   | 0.344                  | Valid       |
| 2   | 0.554   | 0.344                  | Valid       |
| 3   | 0.300   | 0.344                  | Invalid     |
| 4   | 0.300   | 0.344                  | Invalid     |
| 5   | 0.296   | 0.344                  | Invalid     |
| 6   | 0.474   | 0.344                  | Valid       |
| 7   | 0.651   | 0.344                  | Valid       |
| 8   | 0.630   | 0.344                  | Valid       |
| 9   | 0.296   | 0.344                  | Invalid     |
| 10  | 0.651   | 0.344                  | Valid       |
| 11  | 0.651   | 0.344                  | Valid       |
| 12  | 0.300   | 0.344                  | Invalid     |
| 13  | 0.629   | 0.344                  | Valid       |
| 14  | 0.651   | 0.344                  | Valid       |
| 15  | 0.675   | 0.344                  | Valid       |

Based on the results of the instrument validity test, it is known that of the 15 questions tested, there are 10 questions that have a calculated r value greater than r table (0.344) so that they are declared valid, namely questions number 1, 2, 6, 7, 8, 10, 11, 13, 14, and 15. While the other 5 questions, namely numbers 3, 4, 5, 9, and 12, have a calculated r smaller than r table, so they are declared invalid. Thus, most of the questions are suitable for use in research because they have met the validity requirements, while invalid questions should be revised or not used in data collection.

Table 7 **Control Class Validity Test Results** 

| No. | r count | r <sub>table</sub> | Information |
|-----|---------|--------------------|-------------|
| 1   | 0.226   | 0.396              | Valid       |
| 2   | 0.529   | 0.396              | Valid       |
| 3   | 0.814   | 0.396              | Valid       |
| 4   | 0.814   | 0.396              | Invalid     |
| 5   | 0.085   | 0.396              | Invalid     |
| 6   | 0.378   | 0.396              | Valid       |
| 7   | 0.792   | 0.396              | Valid       |
| 8   | 0.814   | 0.396              | Valid       |
| 9   | 0.701   | 0.396              | Valid       |
| 10  | 0.792   | 0.396              | Valid       |
| 11  | 0.792   | 0.396              | Valid       |
| 12  | 0.701   | 0.396              | Valid       |
| 13  | 0.792   | 0.396              | Invalid     |
| 14  | 0.226   | 0.396              | Invalid     |
| 15  | 0.226   | 0.396              | Invalid     |

Based on the results of the item validity test displayed in the table, there are several discrepancies between the calculated r value and the information provided. According to the validity criteria, an item is said to be valid if the calculated r value  $\geq$  r table (0.396). Therefore, the items that should be valid are numbers: 2, 3, 4, 7, 8, 9, 10, 11, 12, and 13, because they have calculated r values above or equal to 0.396. Meanwhile, questions number 1, 5, 6, 14, and 15 have calculated r values below r table so they are categorized as invalid. Thus, there are 10 valid questions and 5 invalid questions, while in the table, some information does not match. Therefore, it is important to revise the table so that the information presented is accurate and in accordance with the results of the validity analysis.

## Reliability Test

Reliability is a measure of the extent to which an instrument or measuring tool produces consistent and stable results when used repeatedly under the same conditions. In a research context, reliability indicates the level of confidence in the measurement results—whether the questionnaire or instrument used can be relied upon to accurately and consistently measure a variable.

Table 8 **Reliability Statistics Experimental Class Reliability Test** 

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .724             | 15         |

# Table 9 Control Class Reliability Test

# **Reliability Statistics**

| Cronbach's Alpha | N of Items |
|------------------|------------|
| .715             | 15         |

Based on the results of the reliability test using the Cronbach's Alpha method, a value of 0.724 was obtained for the Experimental Class and 0.715 for the Control Class with 15 question items used in the research instrument. This value indicates that the instrument used has a sufficient level of reliability. Although the Cronbach's Alpha value is slightly below the ideal limit of 0.70, it is still acceptable in exploratory research or in the initial context of instrument development. This indicates that most items in the questionnaire have fairly good internal consistency in measuring the variables studied. Therefore, this instrument can be considered quite reliable and can be used to continue data analysis, although improvements to some less consistent items may still be needed to improve overall reliability.

# Normality Test

The study conducted normality testing using SPSS 25. The table of normality test results is as follows:

Table 10
One-Sample Kolmogorov-Smirnov Test

|                                  |                | Pre Test<br>Kontrol | Post Test<br>Kontrol | Pre Test<br>Eksperimen | Post Test<br>Eksperimen |
|----------------------------------|----------------|---------------------|----------------------|------------------------|-------------------------|
| N                                |                | 21                  | 21                   | 24                     | 24                      |
| Normal Parameters <sup>a,b</sup> | Mean           | 63.5714             | 74.5238              | 69.7917                | 83.5417                 |
|                                  | Std. Deviation | 9.76510             | 9.20662              | 8.53117                | 9.14606                 |
| Most Extreme Differences         | Absolute       | .286                | .169                 | .199                   | .147                    |
|                                  | Positive       | .286                | .117                 | .199                   | .145                    |
|                                  | Negative       | 269                 | 169                  | 093                    | 147                     |
| Test Statistic                   |                | .286                | .169                 | .199                   | .147                    |
| Asymp. Sig. (2-tailed)           |                | .000°               | .122°                | .015°                  | .197°                   |

- a. Test distribution is Normal
- b. Calculated from data.
- c. Lilliefors Significance Correction.

Based on the results of the normality test using the One-Sample Kolmogorov-Smirnov Test, it is known that the Pre-Test Control data has a significance value of 0.000, which means the data is not normally distributed because the sig value is <0.05. Meanwhile, the Post-Test Control data has a significance value of 0.122, the Pre-Test Experiment data is 0.015, and the Post-Test Experiment is 0.197. From these results, it can be concluded that only the Pre-Test Control and Pre-Test Experiment data are not normally distributed (because sig <0.05), while the Post-Test Control and Post-Test Experiment are normally distributed (because sig >0.05). These results are important for determining the type of statistical test to be used next, whether using parametric or non-parametric tests in data analysis.

#### Homogeneity Test

Table 11
Homogeneity Test
Test of Homogeneity of Variances

|                      | Levene<br>Statistic | df1 | df2 | Sig. |
|----------------------|---------------------|-----|-----|------|
| Pre Test Kontrol     | 1.716               | 2   | 18  | .208 |
| Post Test Kontrol    | 1.298               | 2   | 18  | .297 |
| Pre Test Eksperimen  | .347                | 2   | 18  | .712 |
| Post Test Eksperimen | .209                | 2   | 18  | .813 |

Based on the results of the homogeneity of variance test (Levene's Test), the significance value (Sig.) for each group was 0.208 in the Control Pre-Test, 0.297 in the Control Post-Test, 0.712 in the Experimental Pre-Test, and 0.813 in the Experimental Post-Test. All of these significance values are greater than the limit

of  $\alpha = 0.05$ , which means there is no significant difference in variance between groups. Thus, it can be concluded that the data in each group is homogeneous or has the same variance, thus fulfilling one of the basic assumptions for using parametric statistical tests such as the t-test or ANOVA in further analysis.

# Hypothesis Testing

Test in this study uses a t-test. The t-test essentially aims to explain the extent to which an individual independent variable influences the dependent variable. To determine whether or not there is a significant influence between the independent variable and the dependent variable, the significance value (Sig.) is used in the regression output results. If the Sig. value is <0.05, it can be concluded that there is a significant influence between the independent variable and the dependent variable. Conversely, if the Sig. value is  $\geq$ 0.05, the influence is not significant. This t-test is very important in quantitative research, especially in regression analysis, because it provides an overview of the contribution of each independent variable in explaining changes in the dependent variable.

Table 12 **Hypothesis Testing** 

| Paired | Samn | ee | Test |
|--------|------|----|------|
| rancu  | Samp | CO | 1626 |

|        |                                               | Paired Differences |                |            |                                              |          |        |    |                 |
|--------|-----------------------------------------------|--------------------|----------------|------------|----------------------------------------------|----------|--------|----|-----------------|
|        |                                               |                    |                | Std. Error | 95% Confidence Interval of the<br>Difference |          |        |    |                 |
|        |                                               | Mean               | Std. Deviation | Mean       | Lower                                        | Upper    | t      | df | Sig. (2-tailed) |
| Pair 1 | Pre Test Eksperimen -<br>Post Test Eksperimen | -13.75000          | 12.79011       | 2.61077    | -19.15079                                    | -8.34921 | -5.267 | 23 | .000            |

Based on the results of the Paired Samples T-Test between the Pre-Test and Post-Test Experiment, the average difference value (Mean Difference) was obtained at -13.75, with a significance value (Sig. 2-tailed) of 0.000 which is smaller than 0.05. This indicates that there is a statistically significant difference between the pre-test and post-test scores in the experimental group. The t-value of -5.267 with 23 degrees of freedom (df) strengthens that the increase in learning outcomes after treatment (for example, a certain learning method) is significant. The 95% confidence interval also does not cross zero (from -19.15 to -8.35), which further confirms that the treatment given to the experimental group has a positive influence on student learning outcomes.

# 4. CONCLUSION

Based on the results of observations, research, and data analysis that have been carried out, it shows that the use of group learning methods has a positive influence on the process and learning outcomes of students in the subject of Civics at SD Negeri 106148 Bulu Cina, Deli Serdang, North Sumatra. Evidenced by a significant difference in the average value of the experimental class of 83.54 and the average value of the control class of 74.52. This difference clearly explains that this method has a good impact on improving student understanding. This method also encourages students to be more active in discussing, working together, and exchanging understandings regarding the material being studied. With interaction between group members, students more easily understand abstract concepts in Civics through peer explanations and real examples discussed together.

The results of this study indicate that group learning methods, particularly experimental class groups, can be an attractive and effective alternative for delivering learning materials, particularly in Civics (PPKn), to improve students' comprehension and enthusiasm for learning. In its implementation, teachers need to develop thorough planning, including selecting appropriate materials, developing interactive media, and implementing learning strategies that encourage active student engagement. Therefore, this method is a solution that can be integrated sustainably into the classroom learning process. The researchers offer several recommendations based on the research findings. First, students should be more active and motivated in the learning process and utilize learning media effectively to facilitate understanding. Second, teachers are advised to develop and implement interactive learning media to create a fun and effective learning environment. Third, principals should provide supporting facilities and infrastructure and support teachers in developing innovative learning methods.

#### REFRENCES

- Hanifah, H. (2023). The Influence of CTL Method on Student Learning Outcomes in Civics Learning in Class V SDN 17 WAY Serdang . 144.
- Hidayat, H., Mulyani, H., Karlina, K., Faqih, LT, & Narini, A. (2020). Improving the Quality of Civic Education Learning Outcomes in Upper Elementary Schools by Using Crossword Puzzle Type Active Learning Strategies . 2 (1), 30–39.
- Irdam Idrus, & Sri Irawati. (2019). Analysis of the Discovery Learning Model in Improving Science-Biology Learning Outcomes. *Talenta Conference Series: Science and Technology (ST)*, 2 (2). https://doi.org/10.32734/st.v2i2.532
- Jayusman, I., & Shavab, OAK (2020). Student Learning Activities Using Edmodo-Based Learning Management System (LMS) Learning Media in History Learning. *Artifact Journal*, 7 (1), 13. https://doi.org/10.25157/ja.v7i1.3180
- Khasanah, K. (2018). Efforts to Implement Discussion Learning to Improve Learning Outcomes in Indonesian Language Subjects for Fifth Grade Students of SD Negeri 4 Hargomulyo Sekampung, East Lampung Regency, 2017/2018 Academic Year . https://repository.metrouniv.ac.id/id/eprint/1952
- Muzaki, M. (2016). Efforts to Improve Student Learning Outcomes in Civics Subjects by Using the Numbered Head Together (NHT) Model for Class V Students of Sdn 1 Nampirejo Batanghari in the 2015/2016 Academic Year . 99.
- Nurmalisa, Y., Mentari, A., & Rohman, R. (2020). The Role of Civic Education Learning in Building Civic Conscience. *Bhineka Tunggal Ika: A Study of Theory and Practice of Civic Education Education*, 7 (1), 34–46. https://doi.org/10.36706/jbti.v7i1.10082
- Rahma, EL, Hadiyanti, AHD, & Kriswanto, YB (2023). Improving Analytical Thinking Skills and Student Learning Outcomes with the PBL (Problem Based Learning) Model in Civics. *Journal of Civic Education*, 13 (1), 55. https://doi.org/10.20527/kewarganegaraan.v13i1.15964
- Simanjuntak\*, H., Darlin Pasaribu, KM, & Chetrin Sitanggang, N. (2023). The Influence of School Facilities and Infrastructure and Environment on Student Learning Outcomes in Civics at Karya Bhakti Private Middle School, Medan, 2022/2023 Academic Year. *JIM: Scientific Journal of History Education Students*, 8 (2), 628–633. https://doi.org/10.24815/jimps.v8i2.24752
- Sugiyono (2017:80). Quantitative, Qualitative and R&D Research Methods . Bandung Alfabeta .
- Wahyuni, Hermin Tri, Setyosari, P., & Dedi, K. (2020). Thematic Learning for Grade V Students at Sdn 2020 M / 1442 H.